Differential proportionality – an alternative to differential gene expression not requiring sample normalization

I. Erb1, T. Quinn2, D. Lovell3, and C. Notredame1

1Centre for Genomic Regulation (CRG), C/Dr Aiguader 88, 08003 Barcelona, Spain; ionas.erb@crg.eu
2Deakin University, Geelong, Victoria, Australia
3Queensland University of Technology, Brisbane, Queensland, Australia

Abstract

In gene expression, the emergence of large aggregated data sets along with new single-cell technologies have led to a heterogeneity of samples that makes normalization extremely difficult. The few existing log-ratio applications to gene expression analysis (Fernandes and others, 2013; Lovell and others, 2015) do not fully overcome the problem of sample heterogeneity as their results depend crucially on the choice of a reference in the form of a gene or gene set (Erb and Notredame, 2016).

Here we propose a differential analysis of all possible gene ratios. More precisely, considering n samples coming from two different conditions, we propose a statistic to detect proportionality (i.e. log-ratio variance close to zero) between genes \mathbf{x} and \mathbf{y} in one condition that differs in the proportionality factor in the other condition:

$$\vartheta(\mathbf{x}, \mathbf{y}) = \frac{k \cdot \text{var } L_{\mathbf{x}, \mathbf{y}}^{\{1, \ldots, k\}} + (n - k) \cdot \text{var } L_{\mathbf{x}, \mathbf{y}}^{\{k + 1, \ldots, n\}}}{n \cdot \text{var } L_{\mathbf{x}, \mathbf{y}}^{\{1, \ldots, n\}}},$$

where by $L_{\mathbf{x}, \mathbf{y}}^{\{1, \ldots, k\}}$ we denote the log ratio of \mathbf{x} and \mathbf{y} over the indices $\{1, \ldots, k\}$. ϑ can be obtained from a decomposition of log-ratio variance into between and within group variance. (The numerator corresponds to the latter, and ϑ values fall between 0 and 1, with smaller values indicating better separation.) Note that ϑ is related to the statistic F underlying one-way ANOVA by $F = (1 - \vartheta)/\vartheta$.

In fact, a standard differential expression framework can now be applied (applied, however, on ratios) using false discovery rates from permutation tests to detect significant values of ϑ. As an example, we apply this framework to a data set of 98 post-mortem brain samples (Lonsdale, J. and others, 2013) from cortex and cerebellum. Unlike in classical differential expression studies, where the main result is a list of genes whose read counts differ between conditions, here we obtain a list of gene pairs whose ratio of co-expression differs between conditions. This allows for a subsequent network analysis, cf. (Tesson and others, 2010) for the classical equivalent called differential correlation.

We also derive an alternative to ϑ that can handle zeroes and compares with the use of pseudo counts. For this statistic, the three terms of the form $k \cdot \text{var } L_{\mathbf{x}, \mathbf{y}}^{\{1, \ldots, k\}}$ in (1) are replaced respectively by

$$\sum_{i=1}^{k} \left(\frac{x_i^\alpha}{\frac{1}{k} \sum_{j=1}^{k} x_j^\alpha} - \frac{y_i^\alpha}{\frac{1}{k} \sum_{j=1}^{k} y_j^\alpha} \right)^2.$$

This is inspired by the observation that chi-square distances converge to log-ratio variances when applying a Box-Cox transformation with the parameter $\alpha \to 0$ (Greenacre, 2009). We supplement this work with an R package that provides a fast and efficient implementation of these analyses.

References

